

New KHz capable software in Metsähovi

TTINEN

Kirčo Arsov

Finnish Geodetic Institute
Department of Geodesy and Geodynamics
kirco.arsov@fgi.fi

SLR Workshop Wettzell, May. 2011

Short Bio

2007-cur Responsiblle for Metsähovi Fundamental station in general and SLR in particular. Work concentrated on the new 2KHz SLR in Metsähovi; inplementation of all the new hardware+software and fine tunning the system. Research also on Satellite Geodesy in general and Gravity from space in particular.

Some Department Tasks

- EUREF and its realisation in Finland (EUREF-FIN), connection to the international frames
- Vertical datums, precise levelling, and new Finnish height system, participation in the creation of new European vertical datum
- Participation on IAG services (IGS, IVS, ILRS, IDS) and other international permanent geodetic networks (EPN, GGP, NGOS, GGOS ...), especially using FinnRef and the instrumentation in Metsähovi
- Promotion, education and consultation on new reference frames in Finland;

 Research unit of FGI, Department of Geodesy and Geodynamics

- Research unit of FGI, Department of Geodesy and Geodynamics
- Located in Kirkkonummi, ca 35km west from Helsinki

- Research unit of FGI, Department of Geodesy and Geodynamics
- Located in Kirkkonummi, ca 35km west from Helsinki
- Test field for all measurements

- Research unit of FGI, Department of Geodesy and Geodynamics
- Located in Kirkkonummi, ca 35km west from Helsinki
- Test field for all measurements
- Base points for Gravity and Height system

- Research unit of FGI, Department of Geodesy and Geodynamics
- Located in Kirkkonummi, ca 35km west from Helsinki
- Test field for all measurements
- Base points for Gravity and Height system
- One of few stations having all techniques at one place

- Research unit of FGI, Department of Geodesy and Geodynamics
- Located in Kirkkonummi, ca 35km west from Helsinki
- Test field for all measurements
- Base points for Gravity and Height system
- One of few stations having all techniques at one place
- Staff involved cca 8-10

- Research unit of FGI, Department of Geodesy and Geodynamics
- Located in Kirkkonummi, ca 35km west from Helsinki
- Test field for all measurements
- Base points for Gravity and Height system
- One of few stations having all techniques at one place
- Staff involved cca 8-10

 GPS (IGS station since 1992)

- GPS (IGS station since 1992)
- GPS/GLONASS

- GPS/GLONASS
- SLR (1978-curr)

- GPS/GLONASS
- SLR (1978-curr)
- geo-VLBI (2004- curr)

- GPS/GLONASS
- SLR (1978-curr)
- geo-VLBI (2004- curr)
- DORIS

- GPS/GLONASS
- SLR (1978-curr)
- geo-VLBI (2004- curr)
- DORIS
- SCG

- GPS (IGS station since 1992)
- GPS/GLONASS
- SLR (1978-curr)
- geo-VLBI (2004- curr)
- DORIS
- SCG
- Abs. Gravity

- GPS (IGS station since 1992)
- GPS/GLONASS
- SLR (1978-curr)
- geo-VLBI (2004- curr)

- Abs. Gravity
- Seismometer

SLR general

- Not operational from second half of 2005
- Old 1Hz system; difficult maintenance and observations, most of equipment old and obsolete.
- Personnel change; late 2006 decision to completely renovate the system; started Apr 2007.
- New laser late 2006, HighQ 2KHz, Nd:VAN solid state laser., pulse 12.3ps 830mW, 0.425mJ @532nm.
- Purchase of A032-ET for 2KHz timing
- Graz+own fpga based RGG board for time critical tasks.
- UTC timing; GPS time + frequency receiver from CNSSYS (used frequently in VLBI);Serves also as NTP time server.
- Meteo server; Vaisala PTU200 (in the station at the moment 5 barometers present)

SLR general

- New photodetector C-SPAD replaced the old PMT.
- Couple of pulse distributors.
- Timing signal from H. Maser.
- New encoders for the telescope together with motors, complete renovation of the telescope is undergoing.
- New room for SLR instrumentation.
- New operational software from scratch to suit the new 2KHz SLR.
- Primary telescope mirror recoated.
- Mechanical/optical solution for the separate beam path under implementation.
- Seeking funding for a new telescope and a dome to host the new SLR observatory building in the future

2KHz software

- Windows 7 operating system with intel i9 -> 8 threads.
- Operator knowledge only how to use mouse.
- RTOS not needed because of:
 - Windows is never later then 1 msec. Especially in loops, threads or services.
 - Running only the most necessary services.
 - All time critical tasks are programmed as windows services or threads or executed in hardware.
 - A032-ET has FIFO buffers, so no need for real-time.
 - All fpga board tasks done in FIFOs.
 - Min "idle" requirement is ToF. GOCE 1.5-2 ms.
 - Graphics is done with DirectX10 inside graphics board. Partly is programmed as video game.
 - Full GUI implementation with MFC library.

2KHz software

- RTOS not needed because of: (cnt.)
 - all writings to disk are done binary in threads writing big amount of data at once; ex. write everything after 5 min observing from service.
 - all interpolations, computations etc from threads.
- Writing everything new from scratch tailored to 2KHz system
 - C++ as programming language +MFC and partly Assembler.
- RGG -> fpga, hardware accelerated, couple of event timers inside, laser control, C-SPAD etc.
- Master windows computer for session planning, SLR measurement, Graphics, 1Gb LAN for time telescope and meteo server communication.
- design of our own fpga SLR controller board based on Graz DOS ISA board.

2KHz software

- PCI and win instead of ISA and DOS
- 150 €board with our own software
- Automatic session downloading, CPF treatment, session planning, observation etc.
- Graphics rendering, computations, display controlled by the graphics external board, no additional burden on CPU.
- Full 2KHz scenario uses only 20% of the CPU.
- Capable of 10KHz observations scenario.
- Use of LAVA PCle for timer reading.
- User/administrator usage for preserving modifying the properties/sessions.
- 1s screenshots copied to ftp server for documentation.

IT IS FREE TO ANYONE INTERESTED!!

(GPL) licence; Code freely available to SLR community!

SLR meteo + UTC

- Own program for Meteo data and NTP
- CNSClock II for UTC offset

SLR A032-ET overlapping

SLR satellites management

SLR residuals filter

SLR residuals filter

to do...

- PCIe FPGA implementation
- Smart satellite search, auto RB, TB determination and setting in real time
- Auto RG_WIDTH setting
- Kalman to aid in filtering ?
- Auto session planning, real time visibility and sat plot
- Post processing module (use Graz/RIGA version for starting)
- Telescope control module
- Work on higher rates ?
- More automation
- Virtual observation animation

- You write massively parallel source code for FPGA. Code is translated directly into hardware.
- You can even fit small computers on a single FPGA (Commodore-64 is popular). FPGA chips have hundreds of free I/O pins you can use for whatever you like: DDR2 busses, PCI busses, motor and robot control, switch-mode supplies, timing systems, ... SLR telescope control?

FPGA vs CPU

 SLR code translated onto FPGA (500++tasks/cycle?)
 Green=memory, blue=SLR logic, light blue=free

Intel Celeron CPU (1 task/Cycle)

FPGA project; Hardware used

PCI and PCI- X	PCIe 1.x/2.0/3.0
Obsolete	The standard
Already faster than SLR requires	Even faster, ≥250MB/s/lane
Cheap sub-\$1k evaluation kits	Kits reasonably inexpensive
Easy to design 66MHz boards	Challenging to make GHz boards
Free PCI software cores for FPGA	Only commercial cores costing ≥\$5000/license

Altera PCI/PCI-X Evaluation Kit €800 Based on a small CycloneII FPGA (EP2C35). MAXII CPLD development kit, €150 -> Open code to SLR community

Next...

Future: Altera CycloneIII or Xilinx Spartan3 micromodules =€100, same SLR functionality!

OR

Just add water (or PCI card edge ③)

Features at glance

- Fully controlled and configured over open-standard Wishbone Interface
- Uses open-source PCI Wishbone from OpenCores.org, GNU LGPL
- SLR in pure VHDL and Verilog source code
 FPGAs from any vendor might be used
- Time critical 2KHz operations into hardware
- Uses multiple clocks derived from H-maser
- Enables use of SLR frequencies up to 10KHz
- Free le's ⇒further extensions
- CycloneII/III FPGAs ⇒old enough ⇒free Altera Quartus 9.x Web Edition ☺
- Own Windows and linux driver for the board

Functionality

- Manage the Range Gate pulses
- Integer and fractional part of the expected RG is written in the PCI registry sent to the C-SPAD
- FIFO of 1024 points is used inside the board
- Controlling of the laser fire frequency
- user might change on-the-fly the laser frequency
- Calibration and CCD control is programmed, and is fully automatic
- Event timing with 5ns resolution
- Start as well as stop events are time-stamped and put into 1024 FIFOs

Functionality

- Integer and fractional part, so absolute reading is possible
- Couple of counters readable, 10MHZ and 200MHz
- Implemented overlapping avoidance of start and stop signals and the user might adjust on-the-fly the intervals of overlapping
- Calibration mode as well as CCD mode fully automatic
- Fully implemented into our SLR software
- Demo program to test the functionality of the board

Demo program for board functionality test

Windows and Linux drivers programmed

Project documentation

Note on OA

OA verilog comments

```
// Description: Laser pwm and range gate pulses as input.
//
// Outputs a shifted laser pwm signal that
// attempts to avoid overlap of laser and range gate.
11
// Attempts to keep the rising(!) edges of the laser
// at a certain minimum distance away from range gate
// pulses. The window is symmetric, laser to RG
// and RG to laser edge time deltas are kept
// longer than the window time by adjusting the
// laser phase shift when it seems that laser/RG
// are too close.
//
// Adjustment method: overlap of direct Laser pwm and a
// fixed-delay (2*window+T) Laser pwm versus Range gate
// is monitored. If direct pwm indicates overlap,
// we output the fixed-delay pwm. And vice versa.
```

OA verilog comments

```
// Does NOT act based on the _current_ range gate
// target. The time deltas are always taken from
// the latest pulses already output.
11
// Note: the pulses are allowed to overlap in
// time e.g. when pulse widths or duty cycle are long.
// Only the rising edges are not allowed to be too close.
//
   output <= Raw_Laser when overlap_shifted_ind=='1' else
              Shifted_Laser when overlap_raw_ind=='1' else
              WhateverWasSelectedLastTime:
```


IT IS FREE TO ANYONE INTERESTED!!

(GPL) licence; FPGA Verilog + Demo Code freely available to SLR community!

THANK YOU

FOR YOUR ATTENTION

